Increased transient Na+ conductance and action potential output in layer 2/3 prefrontal cortex neurons of the fmr1-/y mouse.
نویسندگان
چکیده
KEY POINTS Layer 2/3 neurons of the prefrontal cortex display higher gain of somatic excitability, responding with a higher number of action potentials for a given stimulus, in fmr1-/y mice. In fmr1-/y L2/3 neurons, action potentials are taller, faster and narrower. Outside-out patch clamp recordings revealed that the maximum Na+ conductance density is higher in fmr1-/y L2/3 neurons. Measurements of three biophysically distinct K+ currents revealed a depolarizing shift in the activation of a rapidly inactivating (A-type) K+ conductance. Realistic neuronal simulations of the biophysical observations recapitulated the elevated action potential and repetitive firing phenotype. ABSTRACT Fragile X syndrome is the most common form of inherited mental impairment and autism. The prefrontal cortex is responsible for higher order cognitive processing, and prefrontal dysfunction is believed to underlie many of the cognitive and behavioural phenotypes associated with fragile X syndrome. We recently demonstrated that somatic and dendritic excitability of layer (L) 5 pyramidal neurons in the prefrontal cortex of the fmr1-/y mouse is significantly altered due to changes in several voltage-gated ion channels. In addition to L5 pyramidal neurons, L2/3 pyramidal neurons play an important role in prefrontal circuitry, integrating inputs from both lower brain regions and the contralateral cortex. Using whole-cell current clamp recording, we found that L2/3 pyramidal neurons in prefrontal cortex of fmr1-/y mouse fired more action potentials for a given stimulus compared with wild-type neurons. In addition, action potentials in fmr1-/y neurons were significantly larger, faster and narrower. Voltage clamp of outside-out patches from L2/3 neurons revealed that the transient Na+ current was significantly larger in fmr1-/y neurons. Furthermore, the activation curve of somatic A-type K+ current was depolarized. Realistic conductance-based simulations revealed that these biophysical changes in Na+ and K+ channel function could reliably reproduce the observed increase in action potential firing and altered action potential waveform. These results, in conjunction with our prior findings on L5 neurons, suggest that principal neurons in the circuitry of the medial prefrontal cortex are altered in distinct ways in the fmr1-/y mouse and may contribute to dysfunctional prefrontal cortex processing in fragile X syndrome.
منابع مشابه
Multiple effects of dopamine on layer V pyramidal cell excitability in rat prefrontal cortex.
The mechanisms underlying the inhibitory effects of dopamine (DA) on layer V pyramidal neuron excitability in the prelimbic region of the rat medial prefrontal cortex were investigated. Under control conditions, DA depressed both action potential generation (driven by somatic current injection) and input resistance (R(N)). The presence of GABA(A) receptor antagonists blocked DA-induced depressi...
متن کاملEffect of Trigonelline on Dendritic Morphology in the Hippocampus and Prefrontal Cortex in Streptozotocin-Induced Diabetic Rats
Introduction: Diabetes mellitus causes adverse changes in the neurological morphology of the hippocampus and prefrontal cortex of the brain by increasing oxidative stress. Trigonelline has antihyperglycemic effects and can inhibit oxidative stress. The aim of this study was to evaluate the protective effect of trigonelline on dendritic changes in hippocampal and prefrontal cortex neurons in dia...
متن کاملCa Signaling in Mouse Cortical Neurons Studied by Two- Photon Imaging and Photoreleased Inositol Triphosphate
IP3-mediated Ca 2 release is a crucial neuronal signaling mechanism that has not been extensively characterized in the mammalian cerebral cortex. We used two-photon, video-rate microscopy to image Ca 2 signals evoked by photoreleased IP3 in pyramidal neurons of mouse prefrontal cortex. Ca 2 responses to photoreleased IP3 varied greatly between different neurons; however, within IP3-responsive n...
متن کاملHuman chorionic gonadotropin attenuates amyloid-β plaques induced by streptozotocin in the rat brain by affecting cytochrome c-ir neuron density
Objective(s): Amyloid β plaques, in Alzheimer’s disease, are deposits in different areas of the brain such as prefrontal cortex, molecular layer of the cerebellum, and the hippocampal formation. Amyloid β aggregates lead to the release of cytochrome c and finally neuronal cell death in brain tissue. hCG has critical roles in brain development, neuron differentiation, and function. Therefore, we...
متن کاملCell-Type Specific Channelopathies in the Prefrontal Cortex of the fmr1-/y Mouse Model of Fragile X Syndrome1,2,3
Fragile X syndrome (FXS) is caused by transcriptional silencing of the fmr1 gene resulting in the loss of fragile X mental retardation protein (FMRP) expression. FXS patients display several behavioral phenotypes associated with prefrontal cortex (PFC) dysfunction. Voltage-gated ion channels, some of which are regulated by FMRP, heavily influence PFC neuron function. Although there is evidence ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of physiology
دوره 595 13 شماره
صفحات -
تاریخ انتشار 2017